How to use stabilizers in ice cream

Ice cream stabilizers! They're probably the most controversial part of ice cream science. And they're a source a great agitation amongst ice cream enthusiasts. 

They're denounced by traditionalists who think everything should be “natural”. And lauded by molecular gastronomers who think science has all the answers.

They're a complicated subject. But there's nothing to be scared of here...

Most of them are natural. When you use them correctly, they'll almost certainly improve your ice cream. And in fact, if you've made ice cream, then you've probably used them in some form already.

​So what are stabilizers?

Put simply: stabilizers are ingredients that thicken water. This is also called adding viscosity. The more viscous a liquid is, the “thicker” it is.

In scientific terms, they're hydrocolloids. When hydrocolloids disperse in a liquid they bind to the water molecules, so reducing their movement. This reduced movement appears to us as increased viscosity or thickening.

The most obvious example of using a stabilizer in cooking is when you thicken gravy with flour.

Gravy thickened with flour

Gravy thickened with flour: a stabilizer

Most stabilizers are natural, coming from plant, animal or bacterial origins. However under European Law (at least), they are considered food additives and must be represented by E numbers in ingredient lists.

Why do we use stabilizers in ice cream?​

Stabilizers can improve ice cream in several significant ways:

  • they reduce ice crystal growth
  • they reduce air bubble size
  • they slowdown melting
  • they increase smoothness, body and creaminess
  • they deliver flavor cleanly

OK, so let's have a look at each of these areas in turn...

​How do stabilizers reduce ice crystal size in ice cream?

First of all, why do we want to reduce ice crystal growth in our ice cream? Well, ice crystals are an important part of ice cream. But if the crystals get too big, they are detectable by the tongue and give the ice cream a coarse, grainy texture and a cold mouth-feel. So, smaller crystals = smoother ice cream!

Ice crystals are only formed in the ice cream maker. Once the ice cream is transferred to a freezer, the existing ice crystals may get bigger, but no new ones are formed.

But ice crystals can grow anywhere there are temperature fluctuations that cause existing crystals to melt and then re-freeze. Because when they re-freeze, rather than creating new crystals, the water migrates to join existing crystals, so increasing their size.

Ice crystal growth in ice cream over time

Over time ice crystals grow as they melt and re-freeze (a to c)

Such temperature fluctuations can actually occur in both the ice cream maker and in the freezer...

Ice crystal growth in the ice cream maker​

Ice crystals are initially formed against the super cooled sides of the ice cream maker. The rotating dasher then scrapes them from the sides and moves them into the center of the mix...

Ice crystals move from colder sides to warmer center

Newly formed ice crystals can melt when they move from cold sides to warmer center

Here, temperatures are warmer and the crystals may melt and then re-freeze later as the temperature of the whole mix decreases.

Ice crystal growth in the freezer​

During storage there can be many temperature fluctuations that cause the ice crystals to melt and then re-freeze. For example when the freezer door is opened and then closed. 

Softened ice cream

Ice crystals that melt here will re-freeze and get bigger back in the freezer

Or when the ice cream is taken out to soften (before serving) and then placed back in the freezer.

So the challenge for all us ice cream enthusiasts is to make ice crystals as small as possible in the ice cream maker and to stop them getting bigger while the ice cream is being stored in the freezer.

​While there's plenty of material that suggests stabilizers only restrict ice crystal growth during storage, there are other studies that show that the initial size of the ice crystals formed during batch freezing are smaller in mixes that use stabilizers.

In my experience, when they come out of the ice cream maker, mixtures made with stabilizers are definitely smoother than the same mixtures made without stabilizers.

How do they do this? The science is not clear here. But it seems likely that by restricting the free movement of water, stabilizers prevent melted ice crystals from finding and joining existing ice crystals when they re-freeze.

How do stabilizers reduce air bubble size in ice cream​?

Why do we want small air bubbles in ice cream? Because (just like small ice crystals), lots of small air bubbles make the ice cream smoother!

Air bubbles in ice cream

Air bubbles in ice cream: the smaller the better!

How do stabilizers keep the air bubbles in ice cream small? Again, the science is not totally clear here. We know that stabilizers make base mixes more viscous. And more viscous base mixes produce smaller air bubbles.

But why do viscous mixes produce smaller bubbles? One theory is that the greater shear stress (force) that's applied to more viscous liquids when they are being churned in the ice cream maker, reduces the size of the bubbles more.

Just like ice crystals, air bubbles can grow in size and reduce in number during storage. This happens in two ways:

  1. Disproportionation occurs when air transfers from smaller to larger bubbles.
  2. Coalescence happens when two bubbles come into contact and join.

The increased viscosity from the stabilizers protects against these processes too, by thickening the films around the air bubbles which keeps neighboring bubbles away from each other.

How do stabilizers slow down melting?

Ice cream that melts too quickly is no fun to eat! Stabilizers can help here too, by both slowing the rate at which ice cream melts and maintaining it's shape better as it does melt.

Meltdown in ice cream

Top: fast melting ice cream. Bottom: slow melting ice cream

This is partly due to the water binding qualities of stabilizers: viscous mixtures simply melt slower.

But it's also due to the smaller air bubbles. Ice cream with many small air bubbles melts significantly slower and retains it's shape better that ice cream with fewer, larger bubbles. And as we already know: stabilizers promote smaller bubbles!

How do stabilizers increase smoothness, body and creaminess?

So we've seen that by reducing the size of ice crystals and air bubbles, stabilizers produce smoother ice cream and slow meltdown.

But they also add body and give a creamy mouth-feel and a silky finish. These qualities are largely a result of the added viscosity that stabilizers produce...

Stabilized ice cream

Stabilized ice cream

Less free flowing water produces a more solid ice cream that tastes creamier and silkier because it's less watery.

Why are people suspicious of stabilizers?

Despite the benefits of stabilizers, many people are either suspicious of, or outright hostile towards their use in ice cream. I think there are two main reasons for this...

  1. bad experiences with over stabilized ice creams
  2. the unfamiliar names, chemically appearance and E numbers seem "unnatural"

Over stabilized ice creams are horrible! They may have a gummy or excessively chewy texture. They can exhibit extremely unnatural melting (maybe they don't melt!). And they often leave a pasty after-taste in your mouth.

Cheap ice cream stall

Cheap ice cream stall

But that's stabilizers used badly. When stabilizers are used well, you don't even realize they're being used at all. You're just amazed by how good the ice cream is!

However, the very concept of using stabilizers is too much for some people. This tends to be down to the idea that they are somehow unnatural, that they're chemicals added to reduce costs rather than improve quality, and that they're unhealthy or even unsafe.

But as I mention above, most stabilizers come from natural sources. And most of them have been used in cooking for hundreds of years.

It's true, they're often used in cheap, commercial ice creams to cut corners and save money. But it's all a matter of intent. If people are using them to save money, we should be wary. If they're using them to make better ice cream, then we should be curious!

Besides, if you've already made ice cream at home, you've probably already used stabilizers.

Stabilizers you're using already


Yep, egg yolks act as a stabilizer. So if you're making egg custard mixtures, you're already stabilizing your ice cream. The stabilizing chemical is egg yolk is called Lecithin and it even has it's own E number: E322.

Egg yolks will give your ice cream fantastic texture and body. They'll emulsify your mix. And they'll also reduce the growth of ice crystals and air bubbles.

Egg yolks will stabilize ice cream

Egg yolks will stabilize ice cream

So why not use egg yolks all the time? Well, they're good, but they're not great. They're just not as good at slowing ice crystal growth as other stabilizers. And over time, they let water escape, which re-freezes and makes the ice cream icy.

They subdue other flavours (especially lighter flavours like herbs and water based flavours like fruit). And add their own eggy flavour, the strength of which depends on how many eggs you use and for how long and to what temperature you cook the base.

So yes, egg yolks will stabilize your ice cream pretty well. But they're not the best performing stabilizers available.


If you've ever tried to make a Sciilain Gelato then you may have used corn flour or tapioca flour. In southern Italy they don't use eggs (or much cream) in ice cream. Instead they use these starches to stabilize their milky gelatos.

Corn flour

Corn flour

Corn flour and tapioca flour work quite well as stabilizers. They don't subdue other flavours like eggs and impart much less flavour themselves.

However, I can often detect them, whether it's through a light flavor trace or a slightly pasty texture. And again, there are other stabilizers that perform much better.


While you almost certainly have some experience of the thickening properties of egg yolks and corn flour, you're less likely to have used gums before. But when people talk about the stabilizers used in ice cream, it's gums they're usually thinking about.

Gums are the most powerful, flexible and the most useful stabilizers that are available to us. They suppress the growth of ice crystals better than any other ingredient. They can be used to alter the texture of ice cream in many different ways. They don't suppress other flavors and are almost flavorless themselves.

What's more, they are so powerful that we only need to use them in tiny amounts. Typically gum stabilizers would only make up 0.1 – 0.5 % of the base mix!

Xanthan gum

Xanthan gum

Most gums appear as off white powders. In fact, they're all just complex sugars, also known as polysaccharides. And they're almost all derived from natural products.

Different gums have subtlety different chemical structures that will have very different effects on the texture, body and sensory qualities of ice cream. And even used alone, they're very powerful.

However, if you combine two or more gums together, the effects of each can be amplified. Or nullified. Or you might get a whole new set of effects! So it is worth experimenting with different combinations of gums to see what effects you find pleasing.

Thickeners vs Gels

While all gums will thicken a liquid, some of them also form gels. Gel are substances that exhibit the characteristics of both a liquid and a solid. Food technologists define a gel as "a high moisture food that more or less retains it's shape when released from it's container". And that definition's good enough for us here!

A carrageenan gel

A carrageenan gel

While some gums always form gels, some will only form gels in dairy based mixtures. And others will form gels only when mixed with other gums!

And different gels have different characteristics. For example they might be strong or weak, brittle or elastic etc.

When we're making ice cream, gels are generally harder to work with than mixes that are simply viscous. They can be difficult to get in the ice cream maker cleanly, so you often have to attack them with a blender to break up the gel.

However, if you're making low fat ice creams or sorbets, they're really useful because they add a creamy texture and substantial body that you wouldn't get otherwise.

Gums that form gels by themselves


Gel qualities

Locust bean gum


Iota Carrageenan

Soft, elastic gel with dairy 

Kappa Carrageenan

Stiff, brittle gel with dairy

Sodium Alginate

Rigid, brittle gel with dairy


Brittle, unstable


Brittle, slightly sticky gel

Gums that form gels with other gums

Gum combinations to form gels

Locust bean gum + Xantham gum

Locus bean gum + Kappa Carrageenan

​Carboxymethyl cellulose + Guar gum

​Carboxymethyl cellulose + All Carrageenans

Plant based gums​

​Most of the gums we use in ice cream are derived from plants. What sorts of plant? Well, generally they're extracted from seeds or seaweeds!

​Locust bean gum (E410)

Locust bean gum (LBG), is also known as Carob Bean Flour and is made from the seeds of the Carob Tree. This tree is very common in Mediterranean countries and LBG has been used as a thickener in cooking for thousands of years.

Locust bean gum

Locust bean gum, made from the seeds of the Carob Tree

LBG is a very popular stabilizer in ice cream. It has some of the best ice crystal size reducing powers of all the gums. And it produces, a smooth texture, a creamy mouth-feel and a silky finish. It also works well with other gums, especially Guar and Carrageenan.

The great thing about ice creams stabilized with LBG is that usually they don't seem like they've been stabilized at all. It gives ice cream a very natural feel. This is because although it forms a weak gel when frozen, that gel disappears when the ice cream melts.

Il Gelato Di San Crispino

The incredible Il Gelato Di San Crispino uses LBG

​However, LBG is not without it's disadvantages. It needs to be heated to fully hydrate and different types of LBG hydrate at different temperatures. But it's typically around 185°F  (85°C), which is higher than ideal when making ice cream.

​Used alone it can also cause wheying off, which is when milk proteins come out of solution to form crystals that are detectable by the tongue and give the ice cream a grainy texture.

​Guar gum (E412)

Guar gum is also derived from a seed, in this case the seeds of the guar plant which is a legume, like a bean. Guar beans have been eaten in India for thousands of years but guar gum has only been used as a stabilizer since the 1950's.

Guar gum

Guar gum, made from guar beans

Guar gum doesn't reduce ice crystal size as well as LBG, but it adds much more viscosity to the mix, which gives more body to the final ice cream. Unlike LBG, it also hydrates at low temperatures.

​But Guar works well with LBG, with each amplifying the powers of the other. So they are often used in combination.

​Used in high quantities, Guar can give ice cream a chewy texture like toffee, which may be desirable or not depending on how you like your ice cream!

Some Guar gums have a strong "beany" flavor that is detectable in ice cream and obviously undesirable. So you may have to shop around to find a brand that doesn't have that taste!

​Carrageenans (E407)

Carrageenans are extracted from seaweeds. Originally these were Irish Moss seaweeds and Carrageenans have been used as thickeners in Irish cooking for centuries.

Carrageenan from red seaweed

Carrageenan is made from red seaweed

However, nowadays they're extracted from other types of red seaweeds that are grown in the Philippines, Tanzania and Indonesia.

​Carrageenans perform pretty averagely at reducing the size of ice crystals. But they have a strong effect on texture, producing a rich and creamy mouth-feel that's similar to egg custard ice creams.

​They also help prevent wheying-off (see above) so are often used in conjunction with LBG which can cause this defect.

​There are three different types of Carrageenans that are used in cooking, each of which varies slightly in their molecular structure:

  1. Lambda
  2. Iota
  3. Kappa

Iota and Kappa Carrageenans form gels with milk so are more commonly used in sorbets and low fat ice creams. While Lambada is used in ice creams with sufficient fat to stabilize without gelling.

Sodium Alginate (E401)

Sodium Alginate is also extracted from seaweed, this time the brown ocean kelp that's found in cold water areas.

Brown Kelp Seaweed

Sodium Alginate is made from Brown Kelp Seaweed

​It dissolves in cold water but hydrates best at temperatures between 155 and 160°F (68 - 71°C). It's pretty good at keeping ice crystals small. Add contributes a texture and body to ice cream that other gums can't replicate.

​Sodium Alginate forms a gel with milk, so it's popular in low fat ice creams. And it's the way in which the rigid gel breaks into a fluid gel when it's being churned that gives the finished ice cream it's unique sensory qualities.

​Carboxymethyl cellulose (E466)

Carboxymethyl cellulose (CMC) is also know as cellulose gum and is synthesized from plant cellulose.

Carboxymethyl cellulose

Carboxymethyl cellulose

It's probably better at suppressing the growth of ice crystals than LBG. It adds body and chewiness to ice cream to the same degree as Guar. And it forms a gel when combined with LBG, Guar and Carrageenans, which may or may not be desirable.

Since Carboxymethyl cellulose is a synthesised product that's extracted from cotton and wood pulp, it pushes the boundaries of what many people would call “natural”. However it's perfectly safe and is commonly used in ice cream production.

Fermented gums

Xanthan gum (E415)

Xanthan gum is a product of fermentation and is created when the bacteria Xanthomonas campestris feeds on sugar. This might sound weird. But it's just like yeast in beer!

Xanthan gum

Xanthan gum

It's an extremely versatile stabilizer. It dissolves in (and thickens) hot or cold water. The viscosity it produces doesn't vary with temperature. It's highly resistant to freeze/thaw cycles. It works at a wide range of acidities. And it combines well with other gums.

It's not the best gum at suppressing ice crystal growth. But it's really easy to get hold of in health food stores (because vegans use it as an egg substitute). And this ready availability, it's ease of use and it's versatility make it a great gum to experiment with.

Other stabilizers​

​Gelatin (E441)

Gelatin is derived from animal collagen, usually pork or beef. And it's what they used to stabilize ice cream in the old days.


It suppresses ice crystal growth really well and gives ice cream a very nice, smooth texture. It's also very easy to get hold of.

​However, it has largely fallen out of favour, because it's expensive and because it's an animal product.

​Pectin (E440)

Pectin is extracted from citrus peel and apple pomace. It's been used for many years as the gelling agent in jam.


There are two types: “low methoxy”, which requires calcium to gel and “high methoxy” which will gel at low pH with loads of sugar.

​Denatured Whey Proteins

​When we heat the ice cream mix, some of the whey proteins in the milk undergo partial unfolding and begin to form a network similar to those formed by hydrocolloids. This process in called “denaturing” and will help stabilize the ice cream in a similar way too.

However, the stabilization is not nearly as powerful as the hydrocolloid's and should be seen as an addition to rather than an alternative.

​How to use stabilizers

So if you're thinking you might like to experiment with stabilizers (and specifically gums), there are three steps that you need to get right:

  1. ​measuring
  2. dispersion
  3. hydration

Measuring stabilizers

Gums are so powerful, that you only need to use a tiny amount: typically between 0.1 and 0.5% of the weight of the base mixture. And if you go just slightly above these proportions, you'll start to get over stabilized ice cream which can be quite unpleasant.

0.1g kitchen scales

0.1g kitchen scales

So, to get your weight measurements right, you'll need some scales that are accurate to 0.1g (or even better 0.01g). 

Quarter teaspoon measurements

Quarter teaspoon measurements

You might have some success experimenting with ¼ teaspoon measures, but it'll be hit and miss. And good quality scales aren't expensive.

My ice cream calculator can help you work out how much exactly you need to add to your mix.

Dispersing stabilizers

Once you've measured your stabilizer, you'll need to mix it with the rest of the ingredients. Gums tend to clump together and won't disperse properly if you dump them straight into a liquid. And if they're not dispersed properly, they don't work!

The best way to get an even dispersion is to add the stabilizer to the other dry ingredients and then mix them all thoroughly with a fork or a whisk. Spend a good 5 minutes on this to make sure it's thoroughly mixed.

Mixing stabilizers

Mixing stabilizers with the other dry ingredients

Once it is mixed, add the liquid and give it a proper going over with a hand blender. Again spend a good few minutes on this.

Blending dry ingredients with milk

Blending dry ingredients with milk

Some people suggest using a blender to form a vortex in the center of the liquid and then pouring the dry ingredients into the middle of the vortex for the best dispersion. I haven't found this necessary but it might help.

But I can't stress the importance of this step enough. If you don't disperse the stabilizer it will clump together and won't fully hydrate. Which means your mix won't thicken properly. And your ice cream will suffer!

Hydrating stabilizers

In order to be effective, a stabilizer must be hydrated: it must absorb water. Some of them need to be heated, others hydrate in cold water. Some hydrate faster than others. You need to know how to get the best hydration from the stabilizer you're using.

Hydrating the stabilizer with heat

Hydrating the stabilizer with heat

For example, Locust Bean Gum needs to be heated to about 185°F (85°C). While Guar and Xantham gum hydrate at room temperature. And Guar needs up to an hour to fully hydrate. Whereas Xantham gum hydrates much quicker.

So, remember! Make sure you're working with the right amount of stabilizer by weighing it accurately. Properly disperse it by mixing it thoroughly with the other dry ingredients before you add liquid. And treat it with the appropriate amount of heat and time to fully hydrate it. Get these three steps right and you should have great success!

​Wrapping up

​Stabilizers are often treated with great suspicion and even hostility. Generally, I think this is because people are ignorant of what they are and why we might want to use them.

​They're natural and they're safe. Of course some people may be allergic to them. Just as some people are allergic to eggs. If that's the case, they should be avoided.

​However, they can help us make much, much better ice cream. And that's the most important point here. We're not using them to save money. We're not using them to cut corners.

When we use them, we use them to deliver better texture, better body, a more creamy, luxurious finish. And more stability!

As home-made ice cream enthusiasts we're already hampered by shitty machines that take ages to freeze our mixtures and inflexible freezers that are never at the right temperature.​

Stabilizers can help us overcome these disadvantages to make ice creams that rival the professionals. I urge you to at least experiment!

Click Here to Leave a Comment Below 145 comments